
BIOINFORMATICS Vol. 00 no. 00 2015
Pages 1–6

Approximately independent linkage disequilibrium blocks
in human populations - Supplement
Tomaz Berisa 1,∗ and Joseph K. Pickrell 1,2
1New York Genome Center, New York, NY, USA
2Department of Biological Sciences, Columbia University, New York, NY
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

1 COVARIANCE MATRIX C

Covariance matrix C in Step 1 is calculated using the shrinkage estimator in Eq. 2.7 from Wen and Stephens (2010):

Cij =

{∑panel
ij , i = j

exp(−aij

2m
)
∑panel

ij , i 6= j
,

where
∑panel is the empirical covariance matrix from the panel, aij is an estimate of the population-scaled recombination rate between

SNPs i and j, and m is the number of individuals sampled from a population.
We calculate matrix C based on the publicly available 1000 Genomes Project Phase 1 dataset (1000 Genomes Project Consortium et al.,

2012). We computed this matrix separately in the European, East Asian, and African meta-populations. Genome-wide recombination rates
were obtained from Phase 2 HapMap Release 22 (Frazer et al., 2007) and interpolated to all positions in the 1000 Genomes dataset.

2 CORRELATION MATRIX P

The corresponding correlation matrix P in Step 2 is obtained by calculating the square of Pearson product-moment correlation coefficients
for each element in the covariance matrix as follows:

r2ij =
C2

ij

CiiCjj
,

where Cij is the covariance between SNPs i and j from matrix C.

3 CONVERSION OF MATRIX P TO VECTOR V

Assuming P is sparse, approximately banded, and approximately block-diagonal (with sporadically overlapping blocks), representing each
antidiagonal of P by the sum of it’s elements is a straightforward way of approximating the intensity of LD between equidistant SNPs around
a given SNP. In other words, it can serve as a metric for how close a SNP is to the center of an block of SNPs in LD.

Implementation of the outlined algorithm can further be simplified with the knowledge that P is symmetric.

4 APPLYING LOW-PASS FILTERS OF INCREASING WIDTHS TO V

Applying a low-pass filter to vector V has the effect of filtering out high-frequency fluctuation in the signal, while lower-frequency
components remain in tact. In other words, the vector is ”smoothed”. This is done in order to capture the large-scale variation in LD
and discard small-scale changes. Specifically, we utilize a Hann window (Blackman and Tukey, 1958) for the filtering function in order to
avoid high frequency components that may remain with a simple rectangular window. The Hann function is a discrete window function given
by:
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w[n] = sin2

(
πn

N − 1

)
, 0 ≤ n ≤ N − 1,

where N is the filter width.
Applying a low-pass filter w to vector V is equivalent to the convolution of those two functions. The convolution of discrete functions f

and g is defined as:

(f ∗ g)[n] def
=

∞∑
m=−∞

f [m] g[n−m].

The convolution of two finite sequences is defined by extending the sequences to finitely supported functions on the whole set of integers.
Therefore, applying filter w to vector V is equivalent to:

V ′[n] = (w ∗ V )[n]

In order to achieve the required mean segment size, we search for the minimum filter width (in the distance domain, which results in a
higher cutoff in the frequency domain) satisfying this constraint. The minimum filter width is used because it results in the least amount of
discarded data.

The process of identifying the minimum filter width can be outlined as follows:

1. Set initial filter width to zero

2. Apply filter to vector V

3. Identify and count minima

4. Exit if mean segment size constraint is satisfied, otherwise increase filter width by step value and go to step 2.

Although this approach is valid, it is tedious because it searches every single filter width until it satisfies the search condition. Assuming
that increasing the filter width reduces the number of minima monotonously, we can search this space more efficiently by utilizing one-sided
binary search with deferred detection. In other words, we start out by doubling the filter width until we encounter a value that satisfies the
search condition (but is not minimal), after which we perform a binary search in the space between that value and zero. Also, the deferred
detection algorithm has the advantage that if values in the search space are not unique, it returns the smallest index (the starting index) of the
region where elements are equal to the search value. Therefore, in the case that multiple filter widths yield the same number of minima, the
deferred detection algorithm will return the smallest filter width.

5 FINE-TUNING SEGMENT BOUNDARIES WITH LOCAL SEARCH
Identifying minima in the filtered (i.e., “smoothed”) vector corresponds to identifying large-scale fluctuation in LD. Since the filtered vector
represents large scale variation, it is impervious to shorter-range fluctuation. This makes the minima identified in the previous step a good
starting point for identifying their final values. The final value for a segment boundary is found as follows:

1. Initialize segment boundaries bm to minima identified in Step 4.

2. Define search space SSPm for boundary bm as [ bm−1+bm
2

,
bm+bm+1

2
).

3. For each boundary, find SNP l ∈ SSPm which minimizes its outer sum:
∑

i<l

∑
j>l eij , P = (ei,j)

Fig. 1 illustrates the local search procedure on the simplified example from the manuscript. The full line and transparent orange rectangle
represent an initial breakpoint bm (identified in Step 4 of the main algorithm) and its corresponding outer sum. The dashed lines represent
outer sums for a subset of candidate SNPs in SSPm. The goal of this search procedure is to find the SNP with a minimal outer sum. In the
provided illustration, the local search procedure would identify the SNP corresponding to the green dashed line as a final breakpoint.

This process can be computationally optimized by pre-calculating the total outer sum (defined by all initial breakpoints) once, after which
the local search procedure simply updates this total sum with the difference between two adjacent outer sums (add/subtract one row and
subtract/add one column, depending on the direction of the search) as the search progresses.

6 COMPARISON OF BREAKPOINTS FOR CROHN’S DISEASE GWAS AND HEIGHT GWAS
To compare the LD-aware breakpoints to uniform breakpoints we ran fgwas (Pickrell, 2014) on GWAS of Crohn’s disease (Jostins et al.,
2012) and height (Wood et al., 2014). We used the set of LD-aware breakpoints calculated using European populations. For both sets of
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Fig. 1. Illustration of local search.

# SNP1 SNP2 r2

1 rs80262450 rs12955302 0.203
2 rs2361543 rs2242576 0.914
3 rs2838517 rs3804031 0.255
4 rs2266963 rs5998509 0.804

Table 1. Significant SNPs from Crohn’s disease GWAS (Jostins et al., 2012) placed in different blocks (as defined by uniform breakpoints) with r2 > 0.1

# SNP1 SNP2 r2

1 rs3118903 rs1327646 0.246
2 rs928758 rs7280828 0.352
3 rs62396185 rs806794 0.274
4 rs11774218 rs16905189 0.351

Table 2. Significant SNPs from height GWAS (Wood et al., 2014) placed in different blocks (as defined by uniform breakpoints) with r2 > 0.1

breakpoints, we extracted all regions with a posterior probability of association greater than 0.9, and within each region, we extracted the
individual variant with the maximum posterior probability of association. In Tables 1-2, we list the pairs of these variants that fall into
separate regions according to the uniform breakpoints but which which have r2 > 0.1. Using the LD-aware breakpoints we find no such
pairs of SNPs.

7 LD BLOCK STATISTICS
The number of independent blocks for each ancestry is a consequence of the mean segment size (expressed in number of SNPs and
provided as input to the algorithm). For the published blocks, we used 104 SNPs for the mean segment size and the resulting number of
independent blocks (per chromosome and in total) are shown in Fig. 2. Box plots for block sizes in each of the populations are shown in
Fig. 3. The largest blocks correspond to regions around each chromosome’s centromere, while 95.9%, 94.6%, and 94.8% of the remaining
blocks are within 2 standard deviations of the mean (not including centromere blocks) for African, Asian, and European populations,
respectively.

8 RECOMBINATION ACTIVITY AT BREAKPOINTS
Fig. 4 shows mean recombination activity (calculated from genetic maps from the HapMap 2 Project for 1000 Genomes Project variants,
available at https://github.com/joepickrell/1000-genomes-genetic-maps) at the presented breakpoints (and uniform breakpoints) across
populations. LDetect breakpoints are well above: 1. the genome wide average of 1cM/Mb; and 2. mean recombination rate at uniformly
spaced breakpoints. Therefore, we can conclude that the presented breakpoints fall in areas of high recombination.
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CHROMOSOME AFR ASN EUR
1 202 114 134
2 221 123 145
3 186 105 123
4 187 105 123
5 171 94 111
6 166 97 113
7 152 85 100
8 148 80 95
9 113 64 75
10 129 73 86
11 129 72 85
12 125 70 83
13 94 54 63
14 86 49 57
15 78 44 51
16 82 46 55
17 72 40 48
18 75 43 49
19 58 34 40
20 59 33 39
21 37 21 25
22 35 21 25

Total 2605 1467 1725

Fig. 2. Number of independent blocks per chromosome and in total for African (AFR), Asian (ASN), and European (EUR) populations.
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Fig. 3. Box plot of block sizes for African (AFR), Asian (ASN), and European (EUR) populations. Ends of the whiskers represent the datums still within 1.5
interquartile range of the lower and upper quartiles.
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Fig. 4. Mean recombination activity at breakpoints for ldetect and uniform breakpoints (across populations). Error bars are equal to the standard error of the
mean.
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